视觉径图旨在使用视觉传感器捕获的信息跟踪对象的增量运动。在这项工作中,我们研究了点云测量问题,其中仅使用LIDAR(光检测和测距)获得的点云扫描来估计对象的运动轨迹。提出了一种轻量点云测距溶液,并命名为绿点云机径(GPCO)方法。 GPCO是一种无监督的学习方法,可以通过匹配连续点云扫描的特征来预测对象运动。它由三个步骤组成。首先,使用几何特征感知点采样方案来选择来自大点云的判别点。其次,视图被划分为围绕对象的四个区域,并且尖端++方法用于提取点特征。第三,建立点对应,以估计两个连续扫描之间的对象运动。进行了基准数据集的实验,以证明GPCO方法的有效性。据观察,GPCO以准确性的准确性越优于深度学习方法,而模型规模明显较小,培训时间较少。
translated by 谷歌翻译
In this modern era of technology with e-commerce developing at a rapid pace, it is very important to understand customer requirements and details from a business conversation. It is very crucial for customer retention and satisfaction. Extracting key insights from these conversations is very important when it comes to developing their product or solving their issue. Understanding customer feedback, responses, and important details of the product are essential and it would be done using Named entity recognition (NER). For extracting the entities we would be converting the conversations to text using the optimal speech-to-text model. The model would be a two-stage network in which the conversation is converted to text. Then, suitable entities are extracted using robust techniques using a NER BERT transformer model. This will aid in the enrichment of customer experience when there is an issue which is faced by them. If a customer faces a problem he will call and register his complaint. The model will then extract the key features from this conversation which will be necessary to look into the problem. These features would include details like the order number, and the exact problem. All these would be extracted directly from the conversation and this would reduce the effort of going through the conversation again.
translated by 谷歌翻译
Chest X-ray (CXR) datasets hosted on Kaggle, though useful from a data science competition standpoint, have limited utility in clinical use because of their narrow focus on diagnosing one specific disease. In real-world clinical use, multiple diseases need to be considered since they can co-exist in the same patient. In this work, we demonstrate how federated learning (FL) can be used to make these toy CXR datasets from Kaggle clinically useful. Specifically, we train a single FL classification model (`global`) using two separate CXR datasets -- one annotated for presence of pneumonia and the other for presence of pneumothorax (two common and life-threatening conditions) -- capable of diagnosing both. We compare the performance of the global FL model with models trained separately on both datasets (`baseline`) for two different model architectures. On a standard, naive 3-layer CNN architecture, the global FL model achieved AUROC of 0.84 and 0.81 for pneumonia and pneumothorax, respectively, compared to 0.85 and 0.82, respectively, for both baseline models (p>0.05). Similarly, on a pretrained DenseNet121 architecture, the global FL model achieved AUROC of 0.88 and 0.91 for pneumonia and pneumothorax, respectively, compared to 0.89 and 0.91, respectively, for both baseline models (p>0.05). Our results suggest that FL can be used to create global `meta` models to make toy datasets from Kaggle clinically useful, a step forward towards bridging the gap from bench to bedside.
translated by 谷歌翻译
不断增加的材料科学文章使得很难从已发表的文献中推断化学结构 - 培训关系。我们使用自然语言处理(NLP)方法从聚合物文献的摘要中自动提取材料属性数据。作为我们管道的组成部分,我们使用240万材料科学摘要培训了一种语言模型的材料,该材料模型在用作文本编码器时,在五分之三命名实体识别数据集中的其他基线模型都优于其他基线模型。使用此管道,我们在60小时内从约130,000个摘要中获得了约300,000个物质记录。分析了提取的数据,分析了各种应用,例如燃料电池,超级电容器和聚合物太阳能电池,以恢复非平凡的见解。通过我们的管道提取的数据可通过https://polymerscholar.org的Web平台提供,该数据可方便地定位摘要中记录的材料属性数据。这项工作证明了自动管道的可行性,该管道从已发布的文献开始,并以一组完整的提取物质属性信息结束。
translated by 谷歌翻译
在具有可再生生成的大量份额的网格中,由于负载和发电的波动性增加,运营商将需要其他工具来评估运营风险。正向不确定性传播问题的计算要求必须解决众多安全受限的经济调度(SCED)优化,是这种实时风险评估的主要障碍。本文提出了一个即时风险评估学习框架(Jitralf)作为替代方案。 Jitralf训练风险代理,每天每小时一个,使用机器学习(ML)来预测估计风险所需的数量,而无需明确解决SCED问题。这大大减轻了正向不确定性传播的计算负担,并允许快速,实时的风险估计。本文还提出了一种新颖的,不对称的损失函数,并表明使用不对称损失训练的模型的性能优于使用对称损耗函数的模型。在法国传输系统上评估了Jitralf,以评估运营储量不足的风险,减轻负载的风险和预期的运营成本。
translated by 谷歌翻译
传入/传出车辆的记录是根本原因分析的关键信息,以打击各种敏感组织中的安全违规事件。 RFID标记会阻碍物流和技术方面的车辆跟踪解决方案的可扩展性。例如,要求标记为RFID的每个传入车辆(部门或私人)是严重的限制,并且与RFID一起检测异常车辆运动的视频分析是不平凡的。我们利用公开可用的计算机视觉算法实现,使用有限状态机形式主义开发可解释的车辆跟踪算法。国家机器将用于状态转换的级联对象检测和光学特征识别(OCR)模型中的输入。我们从系统部署站点中评估了75个285辆车的视频片段中提出的方法。我们观察到检测率受速度和车辆类型的影响最大。当车辆运动仅限于在检查点类似于RFID标记的检查点时,将达到最高的检测率。我们进一步分析了700个对Live DATA的车辆跟踪预测,并确定大多数车辆数量预测误差是由于无法辨认的文本,图像布鲁尔,文本遮挡,文本遮挡和vecab外字母引起的。为了进行系统部署和性能增强,我们希望我们正在进行的系统监控能够提供证据,以在安全检查点上建立更高的车辆通知SOP,并将已部署的计算机视觉模型和状态模型的微调驱动为建立拟议的方法作为RFID标记的有希望的替代方法。
translated by 谷歌翻译
队列智能或CI是这种新型优化算法之一。自成立以来,在很短的范围内成功地应用于各个领域,并且观察到与同类算法相比,其结果是有效的。到目前为止,在CI及其相关应用程序上还没有进行过这种类型的文献计量分析。因此,对于那些希望将CI提升到新水平的人来说,这篇研究论文将是破冰船。在这篇研究论文中,Scopus中可用的CI出版物通过图表,有关作者,源标题,关键字的网络图进行分析,这些年来,期刊和期刊。在某种程度上,该文献计量学论文以其文献计量详细信息来展示CI,其应用和详细的系统审查。
translated by 谷歌翻译
通过医学成像检测疾病是由于其非侵入性的。医学成像支持多种数据模式,可以在人体内部进行彻底快速的外观。但是,解释成像数据通常是耗时的,需要大量的人类专业知识。深度学习模型可以加快解释并减轻人类专家的工作。但是,这些模型是数据密集型的,需要大量标记的图像进行培训。在新型疾病暴发(例如Covid-19)中,我们通常没有所需的标记成像数据,尤其是在流行病开始时。深度转移学习通过在公共领域中使用验证的模型来解决此问题,例如任何VGGNET,RESNET,INCEPTION,DENSENET等的变体都是功能学习者,以快速从较少的样本中适应目标任务。大多数审慎的模型都是深层建筑的深度。他们接受了大型多级数据集(例如ImageNet)的培训,并在建筑设计和超级参数调整方面进行了重大努力。我们提出了1个更简单的生成源模型,在单个但相关的概念上预估计,可以与现有较大的预审预周化模型一样有效。我们证明了生成转移学习的有用性,该学习需要较少的计算和培训数据,对于少数射击学习(FSL),使用COVID-19-19,二进制分类用例。我们将经典的深度转移学习与我们的方法进行了比较,还报告了FSL结果,三个设置为84、20和10个培训样本。用于COVID-19分类的生成FSL的模型实现可在https://github.com/suvarnak/generativefslcovid.git上公开获得。
translated by 谷歌翻译
产量估计是葡萄园管理中的强大工具,因为它允许种植者微调实践以优化产量和质量。但是,目前使用手动抽样进行估计,这是耗时和不精确的。这项研究表明,近端成像的应用与深度学习相结合,以进行葡萄园中的产量估计。使用车辆安装的传感套件进行连续数据收集,并使用商业收益率监控器在收获时结合了地面真实收益数据的收集,可以生成一个23,581个收益点和107,933张图像的大数据集。此外,这项研究是在机械管理的商业葡萄园中进行的,代表了一个充满挑战的图像分析环境,但在加利福尼亚中央山谷中的一组常见条件。测试了三个模型架构:对象检测,CNN回归和变压器模型。对象检测模型在手工标记的图像上进行了训练以定位葡萄束,并将束数量或像素区域求和以与葡萄产量相关。相反,回归模型端到端训练,以预测图像数据中的葡萄产量,而无需手动标记。结果表明,在代表性的保留数据集上,具有相当的绝对百分比误差为18%和18.5%的变压器和具有像素区域处理的对象检测模型。使用显着映射来证明CNN模型的注意力位于葡萄束的预测位置附近以及葡萄树冠的顶部。总体而言,该研究表明,近端成像和深度学习对于大规模预测葡萄群的适用性。此外,端到端建模方法能够与对象检测方法相当地执行,同时消除了手工标记的需求。
translated by 谷歌翻译
放射学诊断的传统数据集倾向于在放射学报告旁边提供放射学图像。但是,放射科医生进行的放射学读数是一个复杂的过程,在阅读过程中,放射科医生的眼睛固定等信息有可能成为可从中学习的宝贵数据源。但是,此类数据的收集既昂贵又耗时。这导致了一个问题,即此类数据是否值得投资收集。本文利用最近发表的Eye Gaze数据集对面对不同级别的输入功能的影响的影响和解释性(DL)分类的影响进行详尽的研究,即:放射学图像,放射学报告文本和放射学家眼睛凝视数据。我们发现,通过放射学报告自由文本和放射学图像的组合,可以实现X射线图像的最佳分类性能,而眼睛凝视数据没有提供性能的提升。尽管如此,与培训的模型相比,与从事分类和注意力图的模型相比,眼睛凝视数据将作为次级基础真理以及类标签以及类似于辅助图的模型产生更好的注意力图。
translated by 谷歌翻译